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Netherton syndrome (NS [MIM 256500]) is a rare and severe autosomal recessive disorder characterized by con-
genital ichthyosis, a specific hair-shaft defect (trichorrhexis invaginata), and atopic manifestations. Infants with this
syndrome often fail to thrive; life-threatening complications result in high postnatal mortality. We report the
assignment of the NS gene to chromosome 5q32, by linkage analysis and homozygosity mapping in 20 families
affected with NS. Significant evidence for linkage (maximum multipoint LOD score 10.11) between markers
D5S2017 and D5S413 was obtained, with no evidence for locus heterogeneity. Analysis of critical recombinants
mapped the NS locus between markers D5S463 and D5S2013, within an !3.5-cM genetic interval. The NS locus
is telomeric to the cytokine gene cluster in 5q31. The five known genes encoding casein kinase Ia, the a subunit
of retinal rod cGMP phosphodiesterase, the regulator of mitotic-spindle assembly, adrenergic receptor b2, and the
diastrophic dysplasia sulfate–transporter gene, as well as the 38 expressed-sequence tags mapped within the critical
region, are not obvious candidates. Our study is the first step toward the positional cloning of the NS gene. This
finding promises a better understanding of the molecular mechanisms that control epidermal differentiation and
immunity.

Introduction

Netherton syndrome (NS [MIM 256500]) is a rare
autosomal recessive disease characterized by congenital
ichthyosis, a specific hair-shaft defect (trichorrhexis in-
vaginata), and atopic manifestations (Comèl 1949;
Netherton 1958; Traupe 1989). At birth, infants exhibit
generalized erythroderma and scaling, which may persist
into childhood or may change to ichthyosis linearis cir-
cumflexa, consisting of migratory erythematous and
scaling plaques with a double-edged scale (Comèl 1949;
Altman and Stroud 1969; Hausser and Anton-Lam-
precht 1996). Scalp hair is sparse and brittle, and ex-
amination by microscopy indicates that the hair has
nodes (trichorrhexis invaginata, or “bamboo hair”) re-
sulting from the invagination of the distal part of the
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hair shaft to its proximal part. Expression of trichor-
rhexis invaginata is delayed and may be variable (Ste-
vanovic 1969). As a result, diagnosis of NS in early
childhood is difficult, and the first tentative diagnoses
may mistake NS for other congenital ichthyosiform
erythrodermas. Atopic manifestations are present in
most instances of NS, including eczematous-like rashes,
asthma, angioedema, hay fever, urticaria, high immu-
noglobulin E (IgE) levels in the serum, and hypereosino-
philia, all nonspecific features (Judge et al. 1994; Smith
et al. 1995; Rudikoff and Lebwohl 1998).

Failure to thrive in infancy is frequent; the prognosis
is poor, because infants experience hypernatremic de-
hydration and recurrent infections. A number of asso-
ciated findings have also been reported, including severe
enteropathy with villous atrophy, renal failure, ami-
noaciduria, and growth retardation (Jones et al. 1986;
Judge et al. 1994).

The primary cause of the disorder remains unknown.
Thus far, no cytogenetic abnormalities have been de-
scribed in patients with NS. Histological and ultrastruc-
tural studies of skin sections in patients with NS have
indicated incomplete keratinization of the epidermis
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Figure 1 A, Child with NS, showing redness and peeling of skin, especially around the mouth and the eyes, and sparse and fragile hair.
B, Light-microscopic aspect of scalp hair with trichorrhexis invaginata.

(Hausser and Anton-Lamprecht 1996) and have sug-
gested as possible candidate loci the epidermal-differ-
entiation complex on chromosome 1q21 (Mischke et
al. 1996) and the transglutaminase 3 gene on chro-
mosome 20p13 (Kim et al. 1994). Three chromosomal
regions that have been associated with atopy, high IgE
levels, or hypereosinophilia also have appeared as pos-
sible candidate regions: 5q31, which includes the cy-
tokine-gene cluster (Marsh et al. 1994; Meyers et al.
1994; Mansur et al. 1998); 11q13, which comprises the
gene encoding the b subunit of the high-affinity IgE
receptor (Cox et al. 1998); and 16p12, which includes
the gene for the interleukin-4 receptor (Hershey et al.
1997). Last, the lanceolate hair (lah) mutant mouse,
which develops ichthyosiform dermatitis with hair-
structural defects, has been proposed as an animal
model of NS (Montagutelli et al. 1996). The lah mu-
tation is recessive and maps to proximal chromosome
18, which is syntenic to human 18q12 and which thus
has been suggested as a possible candidate region (Mon-
tagutelli et al. 1996).

Families and Methods

Families

Twenty families comprising 26 individuals affected
with NS and 58 unaffected relatives were studied. Af-
fected individuals ranged in age from newborn to 30

years at the time of the study. One family (family 1) had
three affected siblings; four other kindreds had two af-
fected children each. The other families had only one
affected living offspring each. Parents were known to be
first cousins in nine families (families 2, 4, 5, 8–12, and
19). In families 6 and 7, fathers were half-brothers and
mothers were first cousins. Six families originated from
western Europe, five from Pakistan, three from Turkey,
three from Morocco, two from Japan, and one from
Algeria. In all patients, trichorrhexis invaginata was as-
sessed by microscopic examination of hair.

All patients exhibited typical features of NS (fig. 1),
including scaly erythroderma at birth or soon after,
sparse and short hair showing trichorrhexis invaginata,
and allergic manifestations with elevated IgE serum con-
centrations. No other consistent immunological abnor-
mality was found. In infancy, some patients developed
ichthyosis linearis circumflexa. Failure to thrive was
profound, and most patients with NS developed severe
systemic infections during the neonatal period. In some
patients, the clinical course was complicated by hyper-
natremic dehydration. One infant from family 19 died
at age 2 mo, because of septic shock. The oldest child
of family 6 died at age 10 mo, because of a severe chest
infection and unexplained metabolic acidosis.

Ethical approval for the study was obtained from the
respective ethics committees. After patients gave in-
formed consent, peripheral-blood samples or mouth
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swabs were collected so that DNA could be isolated.
Genomic DNA from CEPH individual 1347-02 was used
as a control for the genotyping.

Genotyping

We performed a genomewide search for linkage with
the ABI PRISM Linkage Mapping Set of microsatellite
markers, version 2 (PE Biosystems). To refine the region
of linkage, additional markers were chosen from the
Généthon map, from the physical map of the diastrophic
dysplasia (DTD) gene locus (markers BT1 and CSFR1
[GenBank Overview]; Hästbacka et al. 1994), and from
a report describing a dinucleotide repeat in the interleu-
kin-9 gene (marker IL9 [Genome Database]; Polymer-
opoulos et al. 1991). All labels were either 6 FAM-,
HEX-, TET-, or NED-5′-end labels.

All PCR reactions were carried out with 25 ng of
genomic DNA as a template in a mixture of 1# PE
Biosystems PCR buffer, 2.5 mM MgCl2, 200 nM of each
dNTP, 5 pmol of each primer, and 0.1 ml of TaqGold
polymerase (PE Biosystems), in a final volume of 15 ml.
The thermocycling conditions were 95�C for 16 min,
followed by 30 cycles at 94�C for 5 s, 56�C for 40 s,
and 72�C for 5 s, followed by a final extension step at
72�C for 5 min. PCR products were pooled with re-
gard to their size range and labeling and were divided
into fractions by denaturing electrophoresis on an ABI
373XL DNA sequencer (Applied Biosystems). All am-
plimers were scored with respect to the CEPH control
genotype 1347-02, by means of GENOTYPER 2.1 soft-
ware (Applied Biosystems).

Statistical Analysis

Data were simulated by the program SLINK (Weeks
et al. 1990), to determine the power to detect linkage
to a rare autosomal recessive locus, in the eight families
used in the initial genome scan. Inbreeding loops were
broken for the calculation of pairwise LOD scores. The
power to obtain significant evidence for linkage (max-
imum LOD score [Zmax] 13) when the recombination
value (v) between the marker tested and the disease locus
was assumed to be .05 or .00 was 72% and 100%,
respectively. Zmax values were calculated by the ILINK
routine of the FASTLINK program (Cottingham et al.
1993); we assumed an autosomal recessive mode of in-
heritance, with complete penetrance and a disease-allele
frequency of .0001. Multipoint homozygosity mapping
was carried out by the HOMOZ program (Kruglyak et
al. 1995). Map order and genetic distances between
markers were determined on the basis of the Généthon
human linkage map (Dib et al. 1996) and the published
physical map of the DTD locus (Hästbacka et al. 1994).
Marker-allele frequencies were estimated on the basis of
data on the noninbred founders.

Haplotype Analysis

Automated haplotype construction was carried out by
the program SIMWALK (Sobel and Lange 1996). The
most likely haplotype configuration for each pedigree
was used for the recombinant-haplotype mapping.

Radiation-Hybrid Mapping

Markers D5S463, D5S2099, D5S2013, and BT1
were mapped by screening the Genebridge 4 radiation-
hybrid panel (Research Genetics); we used the radia-
tion-hybrid–mapper program of the Whitehead Insti-
tute for Biomedical Research/MIT Center for
Genome Research. Data vectors were as follows:
D5S463, 00000111000100000010101011101010010
110000001011001100000120101010220000200011
0002101110010101; D5S2099, 00000101000000100
01010111110102001012000000201100010000010
00000100000000000000000001100010000;
D5S2013, 0020012100211010001000001101102001
0111000101011001100000100100010020000000010
0000101110011001; and BT1, 000001110002101000
1000001100101001011100010101100110000010010
00200000000000100000001110011001.

Results

Exclusion of Candidate Chromosomal Regions and
Initial Assignment of the NS Gene to 5q32

We first tested linkage to six possible candidate chro-
mosomal regions by using markers D1S252, D1S498
and D1S484 (1q21), D20S117 (20p13), D5S471 and
D5S2115 (5q31), D11S987 and D11S1314 (11q13),
D16S3046 (16p12), and D18S478 and D18S1102
(18q12). Pairwise linkage analysis showed no evidence
for linkage with any of these markers, in an initial set
of eight families (families 1–8).

We therefore undertook a genomewide search for link-
age in this set of families. We found preliminary evidence
for linkage with marker D5S436 ( atZ = 3.50 v =max

) on 5q31-32 and with marker D20S195 (.052 Z =max

at ) on 20q11.2. No evidence for linkage3.14 v = .068
(LOD score 12) with other markers could be detected.

Confirmation of Linkage by Homozygosity Mapping

Homozygosity mapping of the entirety of chromo-
somes 5 and 20 was carried out in these eight families
to confirm linkage to D5S436, D20S195, or both. No
significant evidence for linkage was obtained from neigh-
boring markers of the chromosome 20 region, and hap-
lotype analysis indicated that most of the support for
linkage to this region was due to results for a single
family (family 1).

Conversely, homozygosity mapping of the entirety of
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Figure 2 A, Multipoint linkage analysis of a 40-cM region encompassing the NS locus on 5q32. Markers D5S2017 and D5S413 (blackened
arrowheads) delineate a 5.4-cM region of linkage in which multipoint LOD scores (LOD) are 13.0. The multipoint Zmax, 10.11, was obtained
with marker D5S434 (unblackened arrowhead). B, Radiation-hybrid map of NS locus. The map is oriented centromeric (cen [top]) to telomeric
(tel [bottom]). The physical distances (cR) between the NS locus and each marker are indicated on the left; we based them on either the
radiation-hybrid map of chromosome 5 (Whitehead Institute for Biomedical Research/MIT Center for Genome Research) or our radiation-
hybrid mapping results with the Genebridge 4 panel (asterisks). The genetic distances (cM) between the markers, according to the Généthon
human linkage map, are shown on the right. Notably, the positions of markers D5S2099/D5S436 and D5S434/D5S413 are slightly discordant
between the two maps. The NS critical interval is denoted by the thicker vertical line.

chromosome 5 revealed significant support for linkage
between markers D5S2115 and D5S436 (data not
shown). The full data set of 20 families was then typed
for additional markers across a 40-cM region spanning
D5S2115 and D5S436. Initially, an additional 13
markers (D5S2027, D5S659, D5S2055, D5S471,
D5S2098, D5S2057, D5S2115, D5S2010, D5S436,
D5S2090, D5S2014, D5S422, and D5S410, centromeric
to telomeric) from the Généthon human linkage map
were tested, to achieve an average of 3 cM of spacing
across the region. Haplotype analysis indicated that
three of these loci (D5S436, D5S2090, and D5S2014,
centromeric to telomeric), spanning an 8.8-cM region,
showed complete segregation with the disease, under the
recessive model (data not shown).

We next typed 13 additional microsatellite markers
within the 8.8-cM region, including 10 markers
(D5S2033, D5S463, D5S2099, D5S413, D5S434,
D5S2013, D5S636, D5S640, D5S470, and D5S2015,
centromeric to telomeric) from the Généthon map, two
markers (BT1 and CSF1R [GenBank Overview]; Häst-
backa et al. 1994) located between D5S413 and
D5S434, and one marker (IL9 [Polymeropoulos et al.
1991]) within the interleukin-9 gene, between D5S2115
and D5S2017. Homozygosity mapping of the full set of
26 markers showed multipoint LOD scores 13.0 for
eight markers spanning ∼5.4 cM, with the markers

D5S2017 and D5S413 defining the centromeric and telo-
meric boundaries, respectively (fig. 2A). The greatest
support for linkage on the multipoint curve was ob-
served above marker D5S434 (multipoint ).Z = 10.11max

Haplotype analysis revealed that the disease locus was
linked to chromosome 5q in all the families, suggesting
genetic homogeneity.

Radiation-Hybrid Mapping of Markers Showing Critical
Recombinants

To check the position of the markers showing critical
recombinants at the NS locus, we mapped D5S2099,
BT1, D5S463, and D5S2013 by means of the Gene-
bridge 4 radiation-hybrid panel. Markers D5S2099,
D5S463, D5S2013, and BT1 were placed 7.1 centirays
(cR), 19.5 cR, 41.5 cR, and 43.4 cR, respectively, telo-
meric to marker D5S402 in the Genebridge 4–panel
framework (fig. 2B).

Haplotype Analysis and Refinement of the Critical
Region

Careful examination of the haplotypes confirmed that
disease-associated alleles cosegregated with the pheno-
type of NS in all families (fig. 3A). Critical meiotic re-
combinants could be identified (fig. 3B). A recombina-
tion event in individual 12.10 placed the disease locus
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Figure 3 Pedigree structure and haplotype analysis of representative families with NS (A) and critical recombination events (B). Haplotypes
for 26 polymorphic markers on 5q are shown. Markers are ordered centromeric (top) to telomeric (bottom), according to the Généthon human
linkage map, except markers D5S2099 to D5S470, which have been ordered on the basis of our radiation-hybrid mapping results and the
radiation-hybrid map of chromosome 5 (Whitehead Institute for Biomedical Research/MIT Center for Genome Research). Markers used for
the initial genomewide scan are underlined. Disease-linked haplotypes are boxed. Noninformative markers are gray shaded. A, Families 1, 6,
and 7, which were included in the initial genomewide search for linkage. In each family, affected offspring share the same genotype at the NS
locus. In affected individual 1.3, a maternal recombination event places the NS locus centromeric to D5S636. Markers D5S2013, BT1, and
CSF1R are not informative for recombination localization in this individual. In families 6 and 7, the fathers (6.2 and 7.1) are half-brothers,
and the mothers (6.1 and 7.2) are first cousins. The haplotype shared by descent is boxed, in the case of the fathers, and cross-hatched, in the
case of the mothers. Interestingly, the affected offspring (6.5, 7.3, and 7.4) are homozygous for the same disease-associated haplotype, from
D5S2115 to D5S2015, suggesting identity by descent, possibly due to a founder ancestor. B, Critical recombination events occurring in families
3 and 12. Only key individuals are shown. Haplotype analysis in unaffected individual 3.12 locates the NS locus proximal to marker D5S2013,
although marker D5S413 is not fully informative. Haplotype analysis of affected individual 12.10 places the NS locus distal to marker D5S463,
although markers D5S2090 and D5S434 are not fully informative. The NS critical region is indicated by the thickest vertical line.

distal to D5S463, since this affected individual inherited
only one of the disease-linked alleles of D5S463 in family
12. A recombination event in individual 3.12 placed the
disease locus proximal to D5S2013, since this unaffected
individual inherited the two disease-linked alleles of
D5S2013 in family 3. We concluded that the maximal
interval of linkage with the NS phenotype is bordered
by D5S463 (centromeric) and D5S2013 (telomeric), in
a region estimated to be ∼3.5 cM.

Search for Candidate Genes or Transcripts

Examination of the GeneMap’99 consensus map iden-
tified eight genes and 38 expressed-sequence tags (ESTs)
within the D5S463–D5S2013 interval. Of these genes,
PDGFRB, SPARC, and CDX1, which encode platelet-
derived growth factor–receptor b, osteonectin, and cau-
dal-type homeobox transcription factor 1, respectively,
have been mapped distal to BT1, on the published phys-
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ical maps for the DTD and the Treacher Collins syn-
drome regions (Hästbacka et al. 1994; The Treacher
Collins Syndrome Collaborative Group 1996), and
thus they could be excluded from the NS region. The
five other genes localized within the interval were
CSNK1A1, PDE6A, ADRB2, RMSA1, and DTDST,
coding for casein kinase Ia, the a subunit of retinal rod
cGMP phosphodiesterase, adrenergic receptor b2, the
regulator of mitotic-spindle assembly, and the DTD sul-
fate transporter, respectively. Together with the 38 ESTs
in the CNS critical region, they did not appear to be
obvious candidates.

Discussion

In this study, we have mapped the NS gene to chro-
mosome 5q32 in a panel of 20 affected families. Sig-
nificant evidence of linkage to this chromosomal region
was found, with multipoint , betweenZ = 10.11max

markers D5S2017 and D5S413. Haplotype analysis lo-
cated the NS locus in a !3.5-cM genetic interval between
D5S463 and D5S2013. This region spans a 22-cR phys-
ical distance that is estimated to be ∼6 Mb, if it is as-
sumed that 3.7 cR is equivalent to ∼1 Mb in the Ge-
nebridge 4 panel. Notably, markers D5S2090 and
D5S434, which are immediately distal to D5S463, were
not fully informative in individual 12.10; and neither
was marker D5S413, which is proximal to D5S2013, in
individual 3.12 (fig. 3B). These results suggest that fur-
ther reduction of this interval could be possible through
the identification of new polymorphic markers between
D5S463 and D5S2013 and through haplotype analysis
in these families.

Our results exclude the cytokine-gene cluster (Frazer
et al. 1997), which spans a 1-Mb region proximal to
marker D5S2099 and which has been reported to be
associated with asthma and atopy (Postma et al. 1995;
Mansur et al. 1998), asthma and high IgE levels
(Bleecker et al. 1995), high circulating IgE levels (Marsh
et al. 1994; Meyers et al. 1994), and hypereosinophilia
(Broide et al. 1999), all of which are common features
in patients with NS. The chromosomal proximity of the
NS locus to the cytokine-gene cluster suggests a possible
functional clustering of genes involved in immune re-
sponse and atopy. Mapping of the NS gene to a region
proximal to D5S2013 excludes several genes that map
telomeric to the critical region: TCOF1, which is mu-
tated in Treacher Collins syndrome (The Treacher Col-
lins Syndrome Collaborative Group 1996), and CSF1R,
ANX6, CD74, and IL12-B, which encode colony-stim-
ulating factor 1 receptor, annexin VI, CD74 antigen,
and interleukin-12B, respectively.

We have identified, by a database search, five genes
and 38 nonredundant ESTs mapping between D5S463

and D5S2013, none of which appear as obvious can-
didates. Of the five genes, two are involved in human
diseases sharing no common features with NS: the
PDE6A gene, which encodes the a subunit of retinal
rod cGMP phosphodiesterase, is mutated in autosomal
recessive retinis pigmentosa (Huang et al. 1995); and
the DTDST gene, coding for a transmembrane sulfate
transporter is defective in DTD and achondrogenesis
type Ib (Hästbacka et al. 1994; Superti-Furga et al.
1996). The other three genes encode casein kinase Ia
(CSNK1A1), adrenergic receptor b2 (ADRB2), and the
regulator of mitotic-spindle assembly (RMSA1). Casein
kinase Ia is a ubiquitously expressed serine-threonine
protein kinase involved in the regulation of G-pro-
tein–coupled receptors (Tobin et al. 1997), the cell cycle
(Gross et al. 1997), and DNA and RNA synthesis (Ceg-
lieska and Virshup 1993). Polymorphisms in ADRB2
have been associated with susceptibility to nocturnal
asthma and obesity (Turki et al. 1995; Large et al.
1997), and targeted disruption of the ADRB2 gene in
the mouse leads to abnormal vascular tone and impaired
energy metabolism during exercise (Chruscinski et al.
1999). Last, the RMSA1-gene product is required for
mitotic spindle assembly and chromosomal segregation
(Yeo et al. 1994). To assess the expression of the
CSNK1A1, ADRB2, and RMSA1 genes in the skin, we
performed northern blot analyses of total RNA ex-
tracted from cultured normal human epidermal kera-
tinocytes. No specific signal could be detected, although
reverse transcriptase (RT)-PCR analysis showed that
these genes were transcribed in keratinocytes. Com-
puter-assisted EST walking was performed for all of the
38 nonredundant ESTs mapping within the NS inter-
val, by means of the EST-BLAST program of the UK
Human Genome Mapping Project Resource Center. We
found ESTs with homologies to the serine-protease in-
hibitor precursor VAKTI, the P1 chain of alcohol de-
hydrogenase class II, the chemokine RANTES, the leu-
kosialin precursor, and rat arylsulfatase B (GenBank
accession numbers stSG28807, WI-22716, stSG53883,
H14645, and stSG15286, respectively). These ESTs
were detectable, by RT-PCR analysis, in cultured ker-
atinocytes and are currently being further investigated.
Physical mapping of the region is also underway, to
identify new polymorphic markers and to search for
novel transcribed sequences.

In conclusion, we report here, for the first time, the
localization of the gene for NS. Our findings provide
the basis for DNA-based genetic counseling and pre-
natal diagnosis in families at risk. This result is the first
step toward positional cloning of the NS gene, whose
identification is anticipated to provide new insights into
epidermal differentiation and its links with atopy.
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